27 research outputs found

    3T MRI-radiomic approach to predict for lymph node status in breast cancer patients

    Get PDF
    Simple SummaryBreast cancer is the most common cancer in women worldwide. The axillary lymph node status is one of the main prognostic factors. Currently, the methods to define the lymph node status are invasive and not without sequelae (from biopsy to lymphadenectomy). Radiomics is a new tool, and highly varied, but with high potential that has already shown excellent results in numerous fields of application. In our study, we have developed a classifier validated on a relatively large number of patients, which is able to predict lymph node status using a combination of patients clinical features, primary breast cancer histological features and radiomics features based on 3 Tesla post contrast-MR images. This approach can accurately select breast cancer patients who may avoid unnecessary biopsy and lymphadenectomy in a non-invasive way.Background: axillary lymph node (LN) status is one of the main breast cancer prognostic factors and it is currently defined by invasive procedures. The aim of this study is to predict LN metastasis combining MRI radiomics features with primary breast tumor histological features and patients' clinical data. Methods: 99 lesions on pre-treatment contrasted 3T-MRI (DCE). All patients had a histologically proven invasive breast cancer and defined LN status. Patients' clinical data and tumor histological analysis were previously collected. For each tumor lesion, a semi-automatic segmentation was performed, using the second phase of DCE-MRI. Each segmentation was optimized using a convex-hull algorithm. In addition to the 14 semantics features and a feature ROI volume/convex-hull volume, 242 other quantitative features were extracted. A wrapper selection method selected the 15 most prognostic features (14 quantitative, 1 semantic), used to train the final learning model. The classifier used was the Random Forest. Results: the AUC-classifier was 0.856 (label = positive or negative). The contribution of each feature group was lower performance than the full signature. Conclusions: the combination of patient clinical, histological and radiomics features of primary breast cancer can accurately predict LN status in a non-invasive way

    CNN-Based Approaches with Different Tumor Bounding Options for Lymph Node Status Prediction in Breast DCE-MRI

    Get PDF
    Background: The axillary lymph node status (ALNS) is one of the most important prognostic factors in breast cancer (BC) patients, and it is currently evaluated by invasive procedures. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), highlights the physiological and morphological characteristics of primary tumor tissue. Deep learning approaches (DL), such as convolutional neural networks (CNNs), are able to autonomously learn the set of features directly from images for a specific task. Materials and Methods: A total of 155 malignant BC lesions evaluated via DCE-MRI were included in the study. For each patient’s clinical data, the tumor histological and MRI characteristics and axillary lymph node status (ALNS) were assessed. LNS was considered to be the final label and dichotomized (LN+ (27 patients) vs. LN− (128 patients)). Based on the concept that peritumoral tissue contains valuable information about tumor aggressiveness, in this work, we analyze the contributions of six different tumor bounding options to predict the LNS using a CNN. These bounding boxes include a single fixed-size box (SFB), a single variable-size box (SVB), a single isotropic-size box (SIB), a single lesion variable-size box (SLVB), a single lesion isotropic-size box (SLIB), and a two-dimensional slice (2DS) option. According to the characteristics of the volumes considered as inputs, three different CNNs were investigated: the SFB-NET (for the SFB), the VB-NET (for the SVB, SIB, SLVB, and SLIB), and the 2DS-NET (for the 2DS). All the experiments were run in 10-fold cross-validation. The performance of each CNN was evaluated in terms of accuracy, sensitivity, specificity, the area under the ROC curve (AUC), and Cohen’s kappa coefficient (K). Results: The best accuracy and AUC are obtained by the 2DS-NET (78.63% and 77.86%, respectively). The 2DS-NET also showed the highest specificity, whilst the highest sensibility was attained by the VB-NET based on the SVB and SIB as bounding options. Conclusion: We have demonstrated that a selective inclusion of the DCE-MRI’s peritumoral tissue increases accuracy in the lymph node status prediction in BC patients using CNNs as a DL approach

    The impact of tumor edema on T2-weighted 3T-MRI invasive breast cancer histological characterization: a pilot radiomics study

    Get PDF
    Background: to evaluate the contribution of edema associated with histological features to the prediction of breast cancer (BC) prognosis using T2-weighted MRI radiomics. Methods: 160 patients who underwent staging 3T-MRI from January 2015 to January 2019, with 164 histologically proven invasive BC lesions, were retrospectively reviewed. Patient data (age, menopausal status, family history, hormone therapy), tumor MRI-features (location, margins, enhancement) and histological features (histological type, grading, ER, PgR, HER2, Ki-67 index) were collected. Of the 160 MRI exams, 120 were considered eligible, corresponding to 127 lesions. T2-MRI were used to identify edema, which was classified in four groups: peritumoral, pre-pectoral, subcutaneous, or diffuse. A semi-automatic segmentation of the edema was performed for each lesion, using 3D Slicer open-source software. Main radiomics features were extracted and selected using a wrapper selection method. A Random Forest type classifier was trained to measure the performance of predicting histological factors using semantic features (patient data and MRI features) alone and semantic features associated with edema radiomics features. Results: edema was absent in 37 lesions and present in 127 (62 peritumoral, 26 pre-pectoral, 16 subcutaneous, 23 diffuse). The AUC-classifier obtained by associating edema radiomics with semantic features was always higher compared to the AUC-classifier obtained from semantic features alone, for all five histological classes prediction (0.645 vs. 0.520 for histological type, 0.789 vs. 0.590 for grading, 0.487 vs. 0.466 for ER, 0.659 vs. 0.546 for PgR, and 0.62 vs. 0.573 for Ki67). Conclusions: radiomic features extracted from tumor edema contribute significantly to predicting tumor histology, increasing the accuracy obtained from the combination of patient clinical characteristics and breast imaging data

    AIforCOVID: predicting the clinical outcomes in patients with COVID-19 applying AI to chest-X-rays. An Italian multicentre study

    Full text link
    Recent epidemiological data report that worldwide more than 53 million people have been infected by SARS-CoV-2, resulting in 1.3 million deaths. The disease has been spreading very rapidly and few months after the identification of the first infected, shortage of hospital resources quickly became a problem. In this work we investigate whether chest X-ray (CXR) can be used as a possible tool for the early identification of patients at risk of severe outcome, like intensive care or death. CXR is a radiological technique that compared to computed tomography (CT) it is simpler, faster, more widespread and it induces lower radiation dose. We present a dataset including data collected from 820 patients by six Italian hospitals in spring 2020 during the first COVID-19 emergency. The dataset includes CXR images, several clinical attributes and clinical outcomes. We investigate the potential of artificial intelligence to predict the prognosis of such patients, distinguishing between severe and mild cases, thus offering a baseline reference for other researchers and practitioners. To this goal, we present three approaches that use features extracted from CXR images, either handcrafted or automatically by convolutional neuronal networks, which are then integrated with the clinical data. Exhaustive evaluation shows promising performance both in 10-fold and leave-one-centre-out cross-validation, implying that clinical data and images have the potential to provide useful information for the management of patients and hospital resources

    An Open-Source Smart Sensor Architecture for Edge Computing in IoT Applications

    No full text
    Smart sensors are sensing devices that include computational and communication functionalities. In this work we present a reference model aimed at simplifying the implementation of smart sensors and their integration in IoT applications. The proposed model is micro-controller agnostic and it is viable in different scenarios ranging from the management of a single analog sensor to the orchestration of a heterogeneous array of sensors. The model is open-source and the implementation is available online as reference for the development of custom smart sensors. The evaluation of our framework shows that it can be implemented with limited overhead

    Evaluating Tumour Bounding Options for Deep Learning-based Axillary Lymph Node Metastasis Prediction in Breast Cancer

    No full text
    The involvement of axillary lymph node metastasis in breast cancer is one of the most important independent prognostic factors. While the metastasis of lymph node depends on primary tumour intrinsic behaviour, morphology and angioinvasivity, the involvement of the peritumoral tissue by the neoplastic cells also provides useful information for the potential tumour aggressiveness. The lymph node status is currently evaluated by histological invasive procedures with possible complications, asking for introducing safer approaches. Among different imaging techniques, the Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) highlights physiological and morphological characteristics, reflecting breast lesions behaviour and aggressiveness. In the recent years, deep learning (DL) approaches, such as Convolutional Neural Networks, gained increasing popularity for biomedical image processing. Thanks to their ability to autonomously learn from images the set of features for the specific task to solve, they allow finding non-invasive alternatives to the standard procedures used up to now. This paper aims to evaluate the applicability of DL approaches for the axillary lymph node metastasis prediction, considering primary tumour DCE-MRI sequence. Differently from other work in the literature, we include a detailed analysis of healthy tissue influence in lymph node tumour spread through the evaluation of different tumour bounding options. Promising results are reported on a dataset of 153 patients with 155 malignant lesions

    RadioPathomics : multimodal learning in non-small cell lung cancer for adaptive radiotherapy

    No full text
    Current practice in cancer treatment collects multimodal data, such as radiology images, histopathology slides, genomics and clinical data. The importance of these data sources taken individually has fostered the recent rise of radiomics and pathomics, i.e., the extraction of quantitative features from radiology and histopathology images collected to predict clinical outcomes or guide clinical decisions using artificial intelligence algorithms. Nevertheless, how to combine them into a single multimodal framework is still an open issue. In this work, we develop a multimodal late fusion approach that combines hand-crafted features computed from radiomics, pathomics and clinical data to predict radiotherapy treatment outcomes for non-small-cell lung cancer patients. Within this context, we investigate eight different late fusion rules and two patient-wise aggregation rules leveraging the richness of information given by CT images, whole-slide scans and clinical data. The experiments in leave-one-patient-out cross-validation on an in-house cohort of 33 patients show that the proposed fusion-based multimodal paradigm, with an AUC equal to 90.9%, outperforms each unimodal approach, suggesting that data integration can advance precision medicine. The results also show that late fusion favourably compares against early fusion, another commonly used multimodal approach. As a further contribution, we explore the chance to use a deep learning framework against hand-crafted features. In our scenario characterised by different modalities and a limited amount of data, as it may happen in different areas of cancer research, the results show that the latter is still a viable and effective option for extracting relevant information with respect to the former

    3T MRI-Radiomic Approach to Predict for Lymph Node Status in Breast Cancer Patients

    No full text
    Background: axillary lymph node (LN) status is one of the main breast cancer prognostic factors and it is currently defined by invasive procedures. The aim of this study is to predict LN metastasis combining MRI radiomics features with primary breast tumor histological features and patients’ clinical data. Methods: 99 lesions on pre-treatment contrasted 3T-MRI (DCE). All patients had a histologically proven invasive breast cancer and defined LN status. Patients’ clinical data and tumor histological analysis were previously collected. For each tumor lesion, a semi-automatic segmentation was performed, using the second phase of DCE-MRI. Each segmentation was optimized using a convex-hull algorithm. In addition to the 14 semantics features and a feature ROI volume/convex-hull volume, 242 other quantitative features were extracted. A wrapper selection method selected the 15 most prognostic features (14 quantitative, 1 semantic), used to train the final learning model. The classifier used was the Random Forest. Results: the AUC-classifier was 0.856 (label = positive or negative). The contribution of each feature group was lower performance than the full signature. Conclusions: the combination of patient clinical, histological and radiomics features of primary breast cancer can accurately predict LN status in a non-invasive way

    Building an AI-enabled metaverse for intelligent healthcare : opportunities and challenges

    No full text
    This abstract discusses the development of a metaverse for intelligent healthcare, which involves creating a virtual environment where healthcare professionals, patients, and researchers can interact and collaborate using digital technologies. The metaverse can improve the efficiency and effectiveness of healthcare services and provide new opportunities for research and innovation. AI models are necessary for analyzing patient data and providing personalized healthcare recommendations, but the data in a metaverse setting is inherently multimodal, unstructured, noisy, incomplete, limited, or partially inconsistent, which poses a challenge for AI models. However, it becomes necessary the integration of AI models for the development of virtual scanners to simulate image modalities, and robotics to simulate surgical procedures within a virtual environment. The ultimate goal is to leverage the power of AI to enhance the quality of healthcare in a metaverse for intelligent healthcare, which has the potential to transform the way healthcare services are delivered and improve health outcomes for patients worldwide

    Building an AI-enabled metaverse for intelligent healthcare : opportunities and challenges

    No full text
    This abstract discusses the development of a metaverse for intelligent healthcare, which involves creating a virtual environment where healthcare professionals, patients, and researchers can interact and collaborate using digital technologies. The metaverse can improve the efficiency and effectiveness of healthcare services and provide new opportunities for research and innovation. AI models are necessary for analyzing patient data and providing personalized healthcare recommendations, but the data in a metaverse setting is inherently multimodal, unstructured, noisy, incomplete, limited, or partially inconsistent, which poses a challenge for AI models. However, it becomes necessary the integration of AI models for the development of virtual scanners to simulate image modalities, and robotics to simulate surgical procedures within a virtual environment. The ultimate goal is to leverage the power of AI to enhance the quality of healthcare in a metaverse for intelligent healthcare, which has the potential to transform the way healthcare services are delivered and improve health outcomes for patients worldwide
    corecore